Center for battery technologies

University of Zagreb Faculty of Chemical Engineering and Technology

- ✓ Research projects
- ✓ Battery testing
- ✓ Single cell manufacture
- ✓ Battery pack assembly
- ✓ Consultancy/Training
- ✓ Workshops organization

Innovative, reliable, and scalable electrochemical energy storage solutions

Can the Development of Batteries Keep Pace with the Increasing Demands of Electric Vehicles and Mobile Devices?

Zoran Mandić, Faculty of Chemical Engineering and Technology, University of Zagreb

Global Battery Demand (2020-2030)

CBT

Europe battery demand: 250 GWh

Projection: 1500 GWh (2030)

Current gigafactories in Europe:

Germany:

- Tesla's Gruenheide Plant: Since 2022, capacity ~ 50 GWh.
- CATL's Erfurt Plant: Since2022, capacity ~14 GWh.

Poland:

• LG Energy Solution's Wroclaw Plant: Started in 2017, ~ 100 GWh.

France:

• ACC's Douvrin Plant: Started 2023, with plans to double its initial capacity of 13 GWh by 2026.

Hungary:

• Samsung: Started 2018, with a capacity of 30 GWh.

Sweden:

• Northvolt: Commenced production in late 2021, with an installed capacity of 16 GWh.

Major performances of electric cars

Car performance	Battery parameters	Cell-level processes	
Driving distance	Energy density	Charge storage and battery voltage	
Acceleration	Power density	Rate of electrochemical reactions	
Cycle life	No. of ch./disch. cycles	Reversibility and coulombic efficiency	
Charging time	Charge acceptance rate	Charge storage rate	

Key performance indicators (EBA)

The European Battery Alliance, through its Strategic Research and Innovation Agenda, has outlined key performance indicators for batteries:

- Gravimetric Energy Density: > 400 Wh/kg at the cell level.
- Volumetric Energy Density: Surpassing 800 Wh/l
- Cycle Life: 3,000 cycles.
- Charging Rate: Between 3C and 5C.
- **Cost:** Aiming for €75 per kWh at the pack level.

Minimal energy80 kWhconsumption (ZG-ST)
Reserve capacity + 20 %
Capacity deterioration + 20 %
Total energy required 120 kWh
Weight (NMC) > 500 kg
Weight (LFP) > 600 kg

Li / FePO₄ LFP 150 – 180 Wh/kg

 $Li / LiNi_{x}Mn_{y}CozO_{2}$ NMC 200 – 250 Wh/kg

Li / FePO₄ LFP 150 – 180 Wh/kg

 $Li / LiNi_{x}Mn_{\gamma}CozO_{2}$ NMC 200 – 250 Wh/kg

CBT

Specific energy

 $W_{s} = Q_{s}U \quad [W h kg^{-1}]$ [A h kg^{-1}] [V]

- Storing as much charge as possible
- Stability and chemical reversibility
- Maximizing working voltage of a battery
- Flatten a voltage profile

Material science and engineering Electrochemical engineering

Three most promising directions for developing high energy – high power batteries.

BT

Li-metal batteries

Li-metal

CBT

Solid state batteries

Post-lithium-ion technologies

lon	<i>E</i> ⁰ / V	K _s / Ahg⁻¹	r / Å
Li+	- 3,04	3,86	0,76
Na+	- 2,71	1,17	1,02
Mg ²⁺	- 2,70	2,21	0,72
Ca ²⁺	-2,84	1,34	1
Al ³⁺	- 1,66	2,98	1,8

Sodium-ion technology mass production: CATL and BYD

Modest specific energy: 150-200 Wh/kg

- > 3000 ch./disch. Cycles
- Faster charging rates.

Center for battery technologies

University of Zagreb Faculty of Chemical Engineering and Technology

- ✓ Research projects
- ✓ Battery testing
- ✓ Single cell manufacture
- ✓ Battery pack assembly
- ✓ Consultancy/Training
- ✓ Workshops organization

Innovative, reliable, and scalable electrochemical energy storage solutions